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Abstract
In this paper, we give a unified and global new approach to the study of the
conformal structure of the three classical Riemannian spaces as well as of
the six relativistic and non-relativistic spacetimes (Minkowskian, de Sitter,
anti-de Sitter, and both Newton–Hooke and Galilean). We obtain general
expressions within a Cayley–Klein framework, holding simultaneously for all
these nine spaces, whose cycles (including geodesics and circles) are explicitly
characterized in a new way. The corresponding cycle-preserving symmetries,
which give rise to (Möbius-like) conformal Lie algebras, together with their
differential realizations are then deduced without having to resort to solving the
conformal Killing equations. We show that each set of three spaces with the
same signature type and any curvature have isomorphic conformal algebras;
these are related through an apparently new conformal duality. Laplace and
wave-type differential equations with conformal algebra symmetry are finally
constructed.

PACS numbers: 02.20.−a, 02.40.−k, 11.25.Hf

1. Introduction

The role of conformal groups in physics can hardly be overestimated. Taking aside conformal
invariance in quantum field theory, this role appears even at a rather basic level. In special
relativity, spacetime is a flat pseudo-Riemannian space whose kinematical motion group is the
Poincaré group ISO(3, 1); its ‘angle’-preserving transformations generate the Minkowskian
conformal group SO(4, 2) that contains as a subgroup the Poincaré group. This conformal
group is the maximal invariance group of the vacuum Maxwell equations [1–4], and in general,
of a large number of equations in different areas, for instance, all equations describing zero-
mass systems [5–8].

The group of conformal transformations of the N-dimensional (ND) Euclidean space
EN was first found by Liouville [9] and can be obtained from two equivalent approaches.
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The ‘conformal’ method searches for transformations preserving the Euclidean metric up to
proportionality; these preserve the angle between any two crossing curves. The ‘hypersphere’
method is to look for (local) transformations which carry hyperspheres into hyperspheres,
including hyperplanes as limit cases [10]; it was introduced by Lie and Darboux. Both
constructions lead to identical results except for the 2D case, where the conformal angle-
preserving group is infinite dimensional, while the circle-preserving one has dimension 6. In
the generic ND case, transformations obtained through either method generate a Lie group
isomorphic to SO0(N + 1, 1) or to O(N + 1, 1) when discrete reflections and inversions are
also considered.

The Minkowskian and Euclidean spaces are two important particular instances within
the family of flat homogeneous spaces Rp,q ≡ ISO(p, q)/SO(p, q). The conformal group
of Rp,q is isomorphic to SO0(p + 1, q + 1) (discrete reflections and inversions not included)
[9, 11]; its transformations preserve the ‘angle’ between any two curves and they carry Rp,q-
hyperspheres into themselves. In this context, it is rather natural to inquire which are the
conformal groups of the Riemannian and pseudo-Riemannian spaces with non-zero constant
curvature (for N = 2, they are the sphere S2, the hyperbolic plane H2 and the two de Sitter
‘spheres’), and also to analyse the conformal groups of the (contracted) cases with a degenerate
metric (for N = 2, these are the (1 + 1)D Galilean and the two Newton–Hooke spacetimes).
The above spaces together with the Euclidean E2 and the Minkowskian M1+1 spaces constitute
the nine Cayley–Klein (CK) spaces in two dimensions [12–15].

The aim of this paper is to present a new derivation of cycle-preserving (conformal)
transformations which is much simpler than the usual ones and applies to any space(time),
whether flat or curved and with any signature. The paper contains new results in relation
to conformal groups of curved spacetimes, and collects an extensive amount of explicit
information on the cycle-preserving transformations of the nine 2D CK spaces; furthermore,
this approach may be generalized to higher dimensions.

In section 2, we describe the nine 2D CK spaces, whose metric structure is studied
in section 3 by introducing three sets of geodesic coordinates. In section 4, we deduce
the equations of cycles as lines with constant geodesic curvature that include geodesics,
equidistants (or hypercycles), horocycles and circles. Next, in section 5, we obtain the
groups of cycle-preserving symmetries, together with the differential realizations of their
corresponding conformal algebras. Differential equations with conformal algebra symmetry
are constructed in section 6. Some remarks end the paper.

2. The nine two-dimensional Cayley–Klein spaces

To begin with, we recall the algebraic structure of the nine 2D CK spaces [15]. Their motion
groups are collectively denoted by SOκ1,κ2(3), where κ1, κ2 are two real coefficients, which
can be reduced to +1, 0 and −1. The commutation relations of the CK algebra soκ1,κ2(3) on
the basis {P1, P2, J12} and the Casimir invariant read

[J12, P1] = P2 [J12, P2] = −κ2P1 [P1, P2] = κ1J12 (2.1)

C = κ2P
2
1 + P 2

2 + κ1J
2
12. (2.2)

The space of points corresponds to the 2D symmetric homogeneous space

S2
[κ1],κ2

= SOκ1,κ2(3)/SOκ2(2) SOκ2(2) = 〈J12〉 (2.3)

hence, the generator J12 leaves a point O (the origin) invariant, thus acting as the rotation
around O, while P1 and P2 generate translations that move O along two basic directions.
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Table 1. The nine two-dimensional CK spaces S2
[κ1],κ2

= SOκ1,κ2 (3)/SOκ2 (2).

Elliptic: S2 Euclidean: E2 Hyperbolic: H2

S2
[+],+ = SO(3)/SO(2) S2

[0],+ = ISO(2)/SO(2) S2
[−],+ = SO(2, 1)/SO(2)

Oscillating NH: NH1+1
+ Galilean: G1+1 Expanding NH: NH1+1

−
(Co-Euclidean) (Co-Minkowskian)
S2

[+],0 = ISO(2)/ISO(1) S2
[0],0 = IISO(1)/ISO(1) S2

[−],0 = ISO(1, 1)/ISO(1)

Anti-de Sitter: AdS1+1 Minkowskian: M1+1 De Sitter: dS1+1

(Co-hyperbolic) (Doubly hyperbolic)
S2

[+],− = SO(2, 1)/SO(1, 1) S2
[0],− = ISO(1, 1)/SO(1, 1) S2

[−],− = SO(2, 1)/SO(1, 1)

The space S2
[κ1],κ2

has a canonical metric of signature diag(1, κ2) which turns out to have
constant curvature κ1. We display the nine 2D CK spaces in table 1; any vanishing coefficient
κi can be interpreted as an Inönü–Wigner contraction and corresponds to either vanishing
curvature (κ1 → 0) or degenerating metric (κ2 → 0).

Spacetimes with constant curvature [16] appear in this scheme. If {P1, P2, J12} are read as
generators of time translations, space translations and boosts, respectively, the six CK groups
with κ2 � 0 (second and third rows of table 1) are the (kinematical) motion groups of (1 + 1)D
spacetimes, where the coefficients κi are related to the universe time radius τ and speed of
light c by

κ1 = ±1/τ 2 κ2 = −1/c2. (2.4)

The curvature κ1 may also be considered as a cosmological constant. Contractions κ1 → 0
and κ2 → 0 correspond to the flat limit τ → ∞ and to the non-relativistic limit c → ∞,
respectively. According to the values of (κ1, κ2) we find in table 1:

• three ‘absolute-time’ or non-relativistic spacetimes for κ2 = 0: oscillating Newton–
Hooke NH1+1

+ (+, 0), Galilean G1+1 (0, 0) and expanding Newton–Hooke NH1+1
− (−, 0)

(we denote ISO(1) ≡ R), with a degenerate Riemannian metric of signature diag(+, 0);
• three ‘relative-time’ spacetimes for κ2 < 0: anti-de Sitter AdS1+1 (+,−), Minkowskian

M1+1 (0,−) and de Sitter dS1+1 (−,−), with a Lorentzian metric of signature diag(+,−).

A 3D real matrix representation of soκ1,κ2(3) is given by

P1 = −κ1e01 + e10 P2 = −κ1κ2e02 + e20 J12 = −κ2e12 + e21 (2.5)

where eij is a 3D matrix with a single non-zero entry 1 at row i and column j (i, j = 0, 1, 2).
The exponential of these matrices leads to one-parametric subgroups of SOκ1,κ2(3),

eαP1 =

Cκ1(α) −κ1Sκ1(α) 0

Sκ1(α) Cκ1(α) 0
0 0 1


 eγJ12 =


1 0 0

0 Cκ2(γ ) −κ2Sκ2(γ )

0 Sκ2(γ ) Cκ2(γ )




(2.6)

eβP2 =

Cκ1κ2(β) 0 −κ1κ2Sκ1κ2(β)

0 1 0
Sκ1κ2(β) 0 Cκ1κ2(β)




where we have introduced the cosine Cκ(x) and sine Sκ(x) functions [13–15]

Cκ(x) =



cos
√

κx κ > 0
1 κ = 0
cosh

√−κx κ < 0
Sκ(x) =




1√
κ

sin
√

κx κ > 0

x κ = 0
1√−κ

sinh
√−κx κ < 0.

(2.7)
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From them, we define the ‘versed sine’ (or versine) Vκ(x) and the tangent Tκ(x),

Vκ(x) = 1

κ
(1 − Cκ(x)) Tκ(x) = Sκ(x)

Cκ(x)
. (2.8)

These curvature-dependent functions coincide with the circular and hyperbolic ones for
κ = ±1; the contracted case κ = 0 gives rise to the parabolic or Galilean functions:
C0(x) = 1, S0(x) = x and V0(x) = x2/2. Identities for these functions can be found in
the appendix of [15]. We display their derivatives where the corresponding inverse functions
[14] are denoted by the prefix ‘arc-’,

d

dx
Cκ(x) = −κSκ(x)

d

dx
arc Cκ(x) = −1

κ

√
1
κ
(1 − x2)

d

dx
Sκ(x) = Cκ(x)

d

dx
arc Sκ(x) = 1√

1 − κx2
(2.9)

d

dx
Tκ(x) = 1

C2
κ (x)

d

dx
arc Tκ(x) = 1

1 + κx2

d

dx
Vκ(x) = Sκ(x)

d

dx
arc Vκ(x) = 1√

2x − κx2
.

By taking into account the realization (2.6), the CK group SOκ1,κ2(3) can be seen as a
group of linear transformations in an ambient space R

3 = (x0, x1, x2), acting as the group of
isometries of a bilinear form � = diag(1, κ1, κ1κ2). Therefore, an element X ∈ SOκ1,κ2(3)

satisfies XT�X = � where XT denotes the transpose matrix of X.
The action of SOκ1,κ2(3) on R

3 is linear but not transitive, since it conserves the quadratic
form (x0)2 + κ1(x

1)2 + κ1κ2(x
2)2 provided by �, and SOκ2(2) = 〈J12〉 is the isotropy subgroup

of the point O ≡ (1, 0, 0) which will be taken as the origin in the space S2
[κ1],κ2

. The action
becomes transitive if we restrict ourselves to the orbit in R

3 of the point O, which is contained
in the ‘sphere’ �,

� ≡ (x0)2 + κ1(x
1)2 + κ1κ2(x

2)2 = 1. (2.10)

This orbit is identified with the CK space S2
[κ1],κ2

, and (x0, x1, x2) fulfilling (2.10) are called
Weierstrass coordinates; these allow us to obtain a differential realization of the generators as
first-order vector fields in R

3 with ∂i = ∂/∂xi ,

P1 = κ1x
1∂0 − x0∂1 P2 = κ1κ2x

2∂0 − x0∂2 J12 = κ2x
2∂1 − x1∂2. (2.11)

3. Metric structure and coordinate systems

If both coefficients κi are different from zero, SOκ1,κ2(3) is a simple Lie group, and the space
S2

[κ1],κ2
is endowed with a non-degenerate metric g0 coming from the non-singular Killing–

Cartan form in the Lie algebra soκ1,κ2(3). At the origin, g0 is given by

g0(P1, P1) = −2κ1 g0(P2, P2) = −2κ1κ2 g0(P1, P2) = 0. (3.1)

To cover the cases with κ1 = 0 where g0 vanishes identically, we take a factor −2κ1 out of g0,
and introduce the space main metric g1 as −2g1 := g0/κ1. If κ2 = 0, g1 is a degenerate metric
and the action of SOκ1,0(3) on S2

[κ1],0 has an invariant foliation. The restriction of g1 to each
foliation leaf vanishes, but g2 = 1

κ2
g1 has a non-vanishing and well-defined restriction to each

leaf; we call g2 the subsidiary metric. A unified description of the metric structure for the nine
2D CK spaces is summed up as follows [14].
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Figure 1. The three geodesic coordinate systems (a, y), (x, b) and (r, φ) of a point Q. The
geodesics l′1 and l′2 are orthogonal to l2 and l1 through Q with intersection points Q2 and Q1,
respectively.

Proposition 1. The metric structure for a generic space S2
[κ1],κ2

is characterized by:

• A connection ∇ which is invariant under SOκ1,κ2(3).
• A hierarchy of two metrics g1 and g2 = 1

κ2
g1 compatible with ∇. The action of SOκ1,κ2(3)

on S2
[κ1],κ2

is by isometries of both metrics.
• The main metric g1 is actually a metric in the true sense and has constant curvature κ1

and signature diag(+, κ2).
• If κ2 
= 0, g2 is a true quadratic metric proportional to g1. If κ2 = 0, the subsidiary

metric g2 gives a true metric only in each leaf of the invariant foliation in S2
[κ1],0, whose

set of leaves can be parametrized by (x0)2 + κ1(x
1)2 = 1 ≡ S1

[κ1]; g2 has signature (+).

In terms of Weierstrass coordinates in the linear ambient space R
3, the two metrics in

S2
[κ1],κ2

come from the flat ambient metric

ds2 = (dx0)2 + κ1(dx1)2 + κ1κ2(dx2)2 (3.2)

in the form

(ds2)1 = 1

κ1
ds2 (ds2)2 = 1

κ2
(ds2)1. (3.3)

Now we proceed to introduce three relevant coordinate systems of geodesic type in S2
[κ1],κ2

(see figure 1). Let us consider the origin O ≡ (1, 0, 0), two (oriented) geodesics l1 and l2
which are orthogonal through the origin and a generic point Q with Weierstrass coordinates
x = (x0, x1, x2). By taking into account (2.6), we have

• If x = exp(aP1) exp(yP2)O , we call (a, y) the type I geodesic parallel coordinates of Q.
• If x= exp(bP2) exp(xP1)O , we call (x, b) the type II geodesic parallel coordinates of Q.
• The geodesic polar coordinates of the point Q are (r, φ) if x = exp(φJ12) exp(rP1)O .

Weierstrass coordinates x of a generic point Q are displayed in table 2 in three geodesic
coordinate systems; by substitution in the expressions of the metrics in Weierstrass coordinates,
(3.2) and (3.3), we find the main and subsidiary metrics in any of the geodesic coordinates.
From them, we may compute the connection symbols 
i

jk . The area element dS in coordinates,
say u1 and u2, is

√
det g1/κ2 du1 ∧ du2; this information is also summarized in table 2. When

the pair (κ1, κ2) is particularized to its nine essentially different values, relations appearing
in table 2 provide the explicit description of the nine spaces S2

[κ1],κ2
. This is illustrated
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Table 2. Weierstrass coordinates, metric, canonical connection and area element for S2
[κ1],κ2

given
in the three geodesic coordinate systems.

Parallel I (a, y) Parallel II (x, b) Polar (r, φ)

x0 = Cκ1 (a)Cκ1κ2(y) x0 = Cκ1(x)Cκ1κ2 (b) x0 = Cκ1 (r)

x1 = Sκ1 (a)Cκ1κ2(y) x1 = Sκ1(x) x1 = Sκ1(r)Cκ2(φ)

x2 = Sκ1κ2 (y) x2 = Cκ1(x)Sκ1κ2(b) x2 = Sκ1(r)Sκ2(φ)

(ds2)1 = C2
κ1κ2

(y) da2 + κ2 dy2 (ds2)1 = dx2 + κ2C
2
κ1

(x) db2 (ds2)1 = dr2 + κ2S
2
κ1

(r) dφ2

(ds2)2 = dy2, for a = a0 (ds2)2 = C2
κ1

(x) db2, for x = x0 (ds2)2 = S2
κ1

(r) dφ2, for r = r0



y
aa = κ1Sκ1κ2 (y)Cκ1κ2(y) 
x

bb = κ1κ2Sκ1(x)Cκ1(x) 
r
φφ = −κ2Sκ1(r)Cκ1(r)


a
ay = −κ1κ2Tκ1κ2(y) 
b

bx = −κ1Tκ1(x) 

φ
φr = 1/Tκ1 (r)

dS = Cκ1κ2 (y) da ∧ dy dS = Cκ1(x) dx ∧ db dS = Sκ1 (r) dr ∧ dφ

Table 3. The nine spaces S2
[κ1],κ2

in geodesic parallel I coordinates (a, y). In the three Riemannian

spaces κ1 ∈ {1, 0,−1} and κ2 = 1. In the six spacetimes, κ1 = ±1/τ 2, κ2 = −1/c2, a ≡ t is the
time coordinate and y is the space one.

S2 = S2
[+],+ E2 = S2

[0],+ H2 = S2
[−],+

x0 = cos a cos y x0 = 1 x0 = cosh a cosh y

x1 = sin a cos y x1 = a x1 = sinh a cosh y

x2 = sin y x2 = y x2 = sinh y

(ds2)1 = cos2 y da2 + dy2 (ds2)1 = da2 + dy2 (ds2)1 = cosh2 y da2 + dy2



y
aa = sin y cos y 


y
aa = 0 


y
aa = − sinh y cosh y


a
ay = −tan y 
a

ay = 0 
a
ay = tanh y

dS = cos y da ∧ dy dS = da ∧ dy dS = cosh y da ∧ dy

NH1+1
+ = S2

[+1/τ 2],0
G1+1 = S2

[0],0 NH1+1
− = S2

[−1/τ 2],0

x0 = cos(t/τ ) x0 = 1 x0 = cosh(t/τ )

x1 = τ sin(t/τ ) x1 = t x1 = τ sinh(t/τ )

x2 = y x2 = y x2 = y

(ds2)1 = dt2 (ds2)1 = dt2 (ds2)1 = dt2

(ds2)2 = dy2, t = t0 (ds2)2 = dy2, t = t0 (ds2)2 = dy2, t = t0



y
tt = 1

τ 2 y, 
t
ty = 0 


y
tt = 0, 
t

ty = 0 

y
tt = − 1

τ 2 y, 
t
ty = 0

dS = dt ∧ dy dS = dt ∧ dy dS = dt ∧ dy

AdS1+1 = S2
[+1/τ 2],−1/c2 M1+1 = S2

[0],−1/c2 dS1+1 = S2
[−1/τ 2],−1/c2

x0 = cos(t/τ ) cosh(y/cτ ) x0 = 1 x0 = cosh(t/τ ) cos(y/cτ )

x1 = τ sin(t/τ ) cosh(y/cτ ) x1 = t x1 = τ sinh(t/τ ) cos(y/cτ )

x2 = cτ sinh(y/cτ ) x2 = y x2 = cτ sin(y/cτ )

(ds2)1 = cosh2(y/cτ ) dt2 − 1
c2 dy2 (ds2)1 = dt2 − 1

c2 dy2 (ds2)1 = cos2(y/cτ ) dt2 − 1
c2 dy2



y
tt = c

τ
sinh(y/cτ ) cosh(y/cτ ) 


y
tt = 0 


y
tt = − c

τ
sin(y/cτ ) cos(y/cτ )


t
ty = 1

cτ
tanh(y/cτ ) 
t

ty = 0 
t
ty = − 1

cτ
tan(y/cτ )

dS = cosh(y/cτ ) dt ∧ dy dS = dt ∧ dy dS = cos(y/cτ ) dt ∧ dy

in parallel I coordinates in table 3. Note that the non-relativistic (Newtonian) spacetimes
with c = ∞ (κ2 = 0) have foliations with leaves defined by constant a = t , and the
subsidiary (space) metric is relevant only within them. We find a degenerate main temporal
metric (ds2)1 = dt2 (providing ‘absolute-time’), and an invariant foliation whose leaves are
the ‘absolute-space’ at the moment t = t0 with a non-degenerate subsidiary spatial metric
(ds2)2 = dy2 defined in each leaf.
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4. Cycles

Cycles are defined as lines with constant geodesic curvature. Within the vector model in the
ambient space R

3, it can be shown that:

Proposition 2. In a 2D CK space S2
[κ1],κ2

with non-zero curvature κ1 
= 0, cycles are the

intersections of the ‘sphere’ � (2.10) with planes in R
3, that is,

α0x
0 + α1x

1 + α2x
2 = α (4.1)

where α, α0, α1 and α2 are constants; the geodesic curvature kg of the corresponding cycle is

k2
g = κ2

1α2 κ2

α2
2 + κ2α

2
1 + κ1κ2

(
α2

0 − α2
) . (4.2)

Now we deduce the cycle equations in the geodesic coordinate systems. We will assume
κ1 
= 0, but the final results will also hold when κ1 = 0. Let us consider geodesic parallel I
coordinates. The cycle equation, obtained by introducing (a, y) of table 2 in (4.1), reads

α0Cκ1(a) + α1Sκ1(a) = α

Cκ1κ2(y)
− α2Tκ1κ2(y) (4.3)

which can be recast in another much simpler and unknown form by means of relations (A.8)
involving the lambda funcion �κ1κ2(y) ≡ y∧ of y described in the appendix,

α0Cκ1(a) + α1Sκ1(a) = αC−κ1κ2(y
∧) − α2S−κ1κ2(y

∧). (4.4)

In the same way, we find the equations of cycles in the remaining geodesic coordinate systems;
these are summarized in table 4. In each system, we obtain several equivalent expressions for
the rhs of the cycle equations. In particular, the last form in polar coordinates can be rewritten
as a quadratic equation in Tκ1(r/2),

T 2
κ1

(r/2) − 1

κ1

2

α + α0
(α1Cκ2(φ) + α2Sκ2(φ))Tκ1(r/2) +

1

κ1

α − α0

α + α0
= 0. (4.5)

Let Tκ1(r1/2), Tκ1(r2/2) be the two roots of this equation, where r1 and r2 are the distances from
the origin O to the two intersection points of the cycle with the line φ = constant through O.
Then the product

Tκ1(r1/2)Tκ1(r2/2) = 1

κ1

α − α0

α + α0
=: ℘ (4.6)

turns out to be the same for all lines through O. In the flat limit this reduces to r1r2 = 4℘, so
that the quantity ℘ (or rather 4℘) should be called the power of the point relative to the cycle.

In what follows, we proceed to identify the equations of the three generic types of cycles:
geodesics (zero geodesic curvature), equidistants (constant distance to a geodesic) and circles
(constant distance to a point), which are also displayed in table 4.

4.1. Geodesics

If we set α = 0 in (4.3), then kg = 0 and we obtain geodesics as intersections of � with planes
through the origin in R

3 in the vector model. For α2 = 0 we have the non-generic geodesics
a = a0; the generic ones arise when α2 
= 0 by setting β0 = −α0/α2 and β1 = −α1/α2,

Tκ1κ2(y) = β0Cκ1(a) + β1Sκ1(a). (4.7)

In the relativistic spacetimes (κ2 = −1/c2 < 0), geodesic (4.7) can be either a time-like,
space-like or isotropic one according to the character of its tangent vector, distinguished by
the sign either >0,<0,= 0 of 1 + κ1κ2β

2
0 + κ2β

2
1 , respectively. Hereafter, when dealing with

geodesics we will distinguish the possible types; this is an actual distinction only whenever
κ2 < 0 but is irrelevant in the Riemannian spaces with κ2 > 0, where all geodesics merge in a
single type.
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Table 4. Equations of cycles in the spaces S2
[κ1],κ2

in the geodesic coordinate systems. The circle
equations give the finite (time-like) distance between two points, and the equidistant equations
determine the (time-like) distance between a point and a (space-like) line.

Geodesic parallel I coordinates (a, y)

Cycles α0Cκ1(a) + α1Sκ1(a) = α

Cκ1κ2 (y)
− α2Tκ1κ2(y) = αC−κ1κ2(y

∧) − α2S−κ1κ2 (y
∧)

=
(α

√
κ1κ2 − α2

2
√

κ1κ2

)( 1 +
√

κ1κ2Tκ1κ2(y/2)

1 − √
κ1κ2Tκ1κ2(y/2)

)
+
(α

√
κ1κ2 + α2

2
√

κ1κ2

)(1 − √
κ1κ2Tκ1κ2(y/2)

1 +
√

κ1κ2Tκ1κ2(y/2)

)
Geodesics Tκ1κ2 (y) = β0Cκ1(a) + β1Sκ1(a) and a = a0

Equidistants S2
κ1

(d) = κ2

{
Sκ1κ2(y) − Cκ1κ2(y)

(
β0Cκ1(a) + β1Sκ1(a)

)}2

1 + κ2β
2
1 + κ1κ2β

2
0

(κ2 
= 0)

Circles Cκ1 (ρ) = Cκ1κ2 (y)Cκ1κ2(y0)Cκ1 (a − a0) + κ1κ2Sκ1κ2 (y)Sκ1κ2(y0)

Vκ1(ρ) = Cκ1κ2 (y)Cκ1κ2 (y0)Vκ1(a − a0) + κ2Vκ1κ2 (y − y0)

Geodesic parallel II coordinates (x, b)

Cycles α0Cκ1κ2 (b) + α2Sκ1κ2 (b) = α

Cκ1 (x)
− α1Tκ1(x) = αC−κ1(x

∧) − α1S−κ1(x
∧)

=
(α

√
κ1 − α1

2
√

κ1

)( 1 +
√

κ1Tκ1(x/2)

1 − √
κ1Tκ1 (x/2)

)
+
(α

√
κ1 + α1

2
√

κ1

)(1 − √
κ1Tκ1 (x/2)

1 +
√

κ1Tκ1 (x/2)

)
Geodesics Tκ1 (x) = β0Cκ1κ2(b) + β2Sκ1κ2(b) and b = b0

Equidistants S2
κ1

(d) = κ2

{
Sκ1(x) − Cκ1(x)

(
β0Cκ1κ2 (b) + β2Sκ1κ2 (b)

)}2

κ2 + β2
2 + κ1κ2β

2
0

(κ2 
= 0)

Circles Cκ1 (ρ) = Cκ1(x)Cκ1(x0)Cκ1κ2(b − b0) + κ1Sκ1 (x)Sκ1(x0)

Vκ1(ρ) = κ2Cκ1 (x)Cκ1(x0)Vκ1κ2(b − b0) + Vκ1(x − x0)

Geodesic polar coordinates (r, φ)

Cycles α1Cκ2(φ) + α2Sκ2(φ) = α

Sκ1(r)
− α0

Tκ1(r)
= κ1

(α + α0

2

)
Tκ1 (r/2) +

(α − α0

2

) 1

Tκ1 (r/2)

Geodesics
1

Tκ1 (r)
= β1Cκ2 (φ) + β2Sκ2 (φ) and φ = φ0

Equidistants S2
κ1

(d) = κ2

{
Cκ1(r) − Sκ1(r)(β1Cκ2 (φ) + β2Sκ2 (φ))

}2

β2
2 + κ2β

2
1 + κ1κ2

(κ2 
= 0)

Circles Cκ1 (ρ) = Cκ1(r)Cκ1(r0) + κ1Sκ1(r)Sκ1(r0)Cκ2(φ − φ0)

Vκ1(ρ) = Vκ1(r − r0) + κ2Sκ1 (r)Sκ1(r0)Vκ2(φ − φ0)

4.2. Equidistants

In the relativistic spacetimes, the equidistant to a given geodesic is of the same type as the
geodesic, which can also be either time-like or space-like, but its equidistance radius is space-
like or time-like, respectively. The two branches of the equidistant to a ‘space-like’ line given
by (4.7) with ‘time-like’ equidistance radius d are

S2
κ1

(d) = κ2

{
Sκ1κ2(y) − Cκ1κ2(y)(β0Cκ1(a) + β1Sκ1(a))

}2

1 + κ2β
2
1 + κ1κ2β

2
0

for κ2 
= 0. (4.8)

These are the particular cycles with equation (4.3) for α0 = −β0α2, α1 = −β1α2 and α2 
= 0,
as given for the baseline geodesic, but with

α = ±α2Sκ1(d)
(
β2

1 + κ1β
2
0 + 1/κ2

)1/2
(4.9)

instead of α = 0, and their geodesic curvature (4.2) reads

kg = ∣∣κ1Tκ1(d)
∣∣. (4.10)



Conformal symmetries of spacetimes 6609

Table 5. Particularized equations for geodesics (besides a = a0) and circles (constant geodesic
‘time-like’ distance ρ to a fixed centre (a0, y0)) for the nine spaces S2

[κ1],κ2
in geodesic parallel I

coordinates and with the same conventions as in table 3.

S2 = S2
[+],+ E2 = S2

[0],+ H2 = S2
[−],+

tan y = β0 cos a + β1 sin a y = β0 + β1a tanh y = β0 cosh a + β1 sinh a

cos ρ = cos y cos y0 cos(a − a0) ρ2 = (a − a0)
2 cosh ρ = cosh y cosh y0 cosh(a − a0)

+ sin y sin y0 + (y − y0)
2 − sinh y sinh y0

NH1+1
+ = S2

[+1/τ 2],0
G1+1 = S2

[0],0 NH1+1− = S2
[−1/τ 2],0

y = β0 cos(t/τ ) + β1τ sin(t/τ ) y = β0 + β1t y = β0 cosh(t/τ ) + β1τ sinh(t/τ )

cos(ρ/τ ) = cos((t − t0)/τ ) ρ2 = (t − t0)
2 cosh(ρ/τ ) = cosh((t − t0)/τ )

AdS1+1 = S2
[+1/τ 2],−1/c2 M1+1 = S2

[0],−1/c2 dS1+1 = S2
[−1/τ 2],−1/c2

cτ tanh(y/cτ ) = β0 cos(t/τ ) + β1τ sin(t/τ ) y = β0 + β1t cτ tan(y/cτ ) = β0 cosh(t/τ ) + β1τ sinh(t/τ )

cos(ρ/τ ) = −sinh(y/cτ ) sinh(y0/cτ ) ρ2 = (t − t0)
2 cosh(ρ/τ ) = sin(y/cτ ) sin(y0/cτ )

+ cosh(y/cτ ) cosh(y0/cτ ) cos((t − t0)/τ ) − 1
c2 (y − y0)

2 + cos(y/cτ ) cos(y0/cτ ) cosh((t − t0)/τ )

4.3. Circles

A ‘space-like’ circle of centre (a0, y0) and ‘time-like’ radius ρ is

Cκ1(ρ) = Cκ1κ2(y)Cκ1κ2(y0)Cκ1(a − a0) + κ1κ2Sκ1κ2(y)Sκ1κ2(y0) (4.11)

and can, alternatively, be written in terms of versed sines (2.8),

Vκ1(ρ) = Cκ1κ2(y)Cκ1κ2(y0)Vκ1(a − a0) + κ2Vκ1κ2(y − y0). (4.12)

These equations are equivalent to the one in the form (4.3) for the following choice of αi :

α0 = Cκ1(a0)Cκ1κ2(y0) α1 = κ1Sκ1(a0)Cκ1κ2(y0)
(4.13)

α2 = κ1κ2Sκ1κ2(y0) α = Cκ1(ρ).

Hence, the geodesic curvature (4.2) for a circle reads

kg = ∣∣1/Tκ1(ρ)
∣∣ (4.14)

reducing to kg = 1/ρ in the flat case. The circle equations also give the finite form of the
distance s ≡ ρ between two points.

The different types of ‘space-like’ cycles so obtained can be classified according to the
sign of κ1 and the value of the geodesic curvature for each specific CK space is as follows.

• If κ1 > 0 (S2 and AdS1+1), geodesic curvatures of ‘space-like’ equidistants (4.10) and
‘space-like’ circles (4.14) range in kg ∈ (0,∞), so equidistants (4.8) are at the same time
circles (4.11) and vice versa.

• If κ1 = 0 (E2 and M1+1), equidistants are simply geodesics with kg = 0, while circles
correspond to kg ∈ (0,∞).

• If κ1 < 0 (H2 and dS1+1), ‘space-like’ equidistants (4.8) and circles (4.11) are different
cycles and a third type, naturally separating them, appears; these are the ‘space-like’
horocycles, which are the common limits of equidistants when the ‘space-like’ base
geodesic goes to infinity or of ‘space-like’ circles when the centre goes to infinity. In
this case, equidistants (or hypercycles) correspond to the values of kg ∈ (0,

√−κ1) while
circles have kg ∈ (

√−κ1,∞), with kg = 0 for geodesics, kg = √−κ1 for horocycles and
kg = ∞ for circles of radius 0.

In table 5, we explicitly write the equations of geodesics and circles for each of the nine
spaces S2

[κ1],κ2
in parallel I coordinates (a study of Galilean cycles can be found in [12]).
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5. Cycle-preserving Lie groups

In this section, we give a completely new derivation of cycle-preserving groups in S2
[κ1],κ2

,
which leads to some illuminating views on the relation between conformal algebras for curved
and flat spaces.

5.1. One-parameter subgroups of geodesic-preserving transformations

We start by (re)deriving the geodesic-preserving transformations. Consider the equations of
geodesics in parallel I coordinates of table 4. We look whether there exists a transformation
within the ansatz (a, y) → (a′(a), y) which carries geodesics into geodesics. Noting that y is
assumed not to change, this requirement is equivalent to imposing

β ′
0Cκ1(a

′(a)) + β ′
1Sκ1(a

′(a)) ∝ β0Cκ1(a) + β1Sκ1(a). (5.1)

The addition properties of the trigonometric functions display, directly, the obvious solution

(a, y) → (a + a0, y) (5.2)

which is the translation along the geodesic l1 of S2
[κ1],κ2

generated by P1. Now we start with
the ansatz (x, b) → (x, b′(b)) in parallel II coordinates; similar arguments lead to another
geodesic-preserving map,

(x, b) → (x, b + b0) (5.3)

which is the translation along the geodesic l2 generated by P2. Finally, we look within the
ansatz (r, φ) → (r, φ′(φ)) in polar coordinates; the condition of preserving geodesics singles
out the transformation

(r, φ) → (r, φ + φ0) (5.4)

which is the rotation around the origin of S2
[κ1],κ2

with the generator J12. The fundamental
vector fields of three one-parameter groups (5.2)–(5.4) are given by

P1 = −∂a P2 = −∂b J12 = −∂φ. (5.5)

By writing them in a single coordinate system (see table 6) it can be shown that they close a
Lie algebra with commutators (2.1); thus, we recover the CK algebra soκ1,κ2(3).

5.2. One-parameter subgroups of cycle-preserving transformations

We now look for additional cycle-preserving transformations which are not geodesic-
preserving. A natural idea is to consider three ansatzes complementary to those previously
explored, that is, (a, y) → (a, y ′(y)), (x, b) → (x ′(x), b) and (r, φ) → (r ′(r), φ).

Let us begin with the ansatz (a, y) → (a, y ′(y)) and require this to be cycle-preserving.
By taking (4.4) into account and noting that a is assumed not to change, we enforce

α′C−κ1κ2(y
′∧) − α′

2S−κ1κ2(y
′∧) ∝ αC−κ1κ2(y

∧) − α2S−κ1κ2(y
∧) (5.6)

and again, the addition trigonometric relations display a solution y ′∧ = y∧ + ξ , which is a one-
parametric subgroup of transformations with canonical parameter ξ and whose fundamental
vector field follows using (A.8):

L2 = −∂y∧ = −Cκ1κ2(y)∂y. (5.7)

Transformations generated by L2 behave as translations in the neighbourhood of the origin O;
we call L2 the generator of �-translations along the geodesic l2 of S2

[κ1],κ2
. If one now takes

into account (A.7), then �-translations can be rewritten as

(a, y) → (a, y ′(y)) y ′ = �−κ1κ2

(
�κ1κ2(y) + ξ

)
. (5.8)
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Table 6. Parametrized differential realizations for the generators {Pi, J12,D,Li ,Gi, Ri} of
conformal algebras confκ1,κ2 (these are zero-realizations for both conformal Casimirs).

Geodesic parallel I coordinates (a, y)

P1 = −∂a, P2 = −κ1κ2Sκ1(a)Tκ1κ2(y)∂a − Cκ1 (a)∂y

J12 = κ2Cκ1 (a)Tκ1κ2(y)∂a − Sκ1(a)∂y, D = − Sκ1(a)

Cκ1κ2 (y)
∂a − Cκ1 (a)Sκ1κ2(y)∂y

L1 = − Cκ1(a)

Cκ1κ2 (y)
∂a + κ1Sκ1(a)Sκ1κ2(y)∂y , L2 = −Cκ1κ2 (y)∂y

G1 = 1

Cκ1κ2 (y)
(Vκ1(a) − κ2Vκ1κ2 (y))∂a + Sκ1(a)Sκ1κ2(y)∂y

G2 = κ2Sκ1(a)Tκ1κ2(y)∂a − (Vκ1(a) − κ2Vκ1κ2(y))∂y

R1 = − 1

2

(
1 +

Cκ1 (a)

Cκ1κ2 (y)

)
∂a +

1

2
κ1Sκ1 (a)Sκ1κ2 (y)∂y

R2 = − 1
2 κ1κ2Sκ1(a)Tκ1κ2 (y)∂a − 1

2 (Cκ1(a) + Cκ1κ2 (y))∂y

Geodesic parallel II coordinates (x, b)

P1 = −Cκ1κ2 (b)∂x − κ1Tκ1 (x)Sκ1κ2(b)∂b, P2 = −∂b

J12 = κ2Sκ1κ2 (b)∂x − Tκ1(x)Cκ1κ2 (b)∂b,D = −Sκ1(x)Cκ1κ2(b)∂x − Sκ1κ2 (b)

Cκ1 (x)
∂b

L1 = −Cκ1(x)∂x , L2 = κ1κ2Sκ1(x)Sκ1κ2(b)∂x − Cκ1κ2 (b)

Cκ1 (x)
∂b

G1 =
(
Vκ1(x) − κ2Vκ1κ2 (b)

)
∂x + Tκ1 (x)Sκ1κ2 (b)∂b

G2 = κ2Sκ1(x)Sκ1κ2 (b)∂x − 1

Cκ1(x)

(
Vκ1(x) − κ2Vκ1κ2 (b)

)
∂b

R1 = − 1
2

(
Cκ1(x) + Cκ1κ2 (b)

)
∂x − 1

2 κ1Tκ1 (x)Sκ1κ2 (b)∂b

R2 = 1

2
κ1κ2Sκ1 (x)Sκ1κ2 (b)∂x − 1

2

(
1 +

Cκ1κ2(b)

Cκ1(x)

)
∂b

Geodesic polar coordinates (r, φ)

P1 = −Cκ2(φ)∂r +
Sκ2 (φ)

Tκ1 (r)
∂φ, P2 = −κ2Sκ2(φ)∂r − Cκ2 (φ)

Tκ1 (r)
∂φ

J12 = −∂φ,D = −Sκ1(r)∂r

L1 = −Cκ2(φ)Cκ1 (r)∂r +
Sκ2 (φ)

Sκ1 (r)
∂φ, L2 = −κ2Sκ2(φ)Cκ1 (r)∂r − Cκ2 (φ)

Sκ1 (r)
∂φ

G1 = Cκ2(φ)Vκ1 (r)∂r + Sκ2(φ)
Vκ1 (r)

Sκ1 (r)
∂φ

G2 = κ2Sκ2(φ)Vκ1(r)∂r − Cκ2(φ)
Vκ1 (r)

Sκ1 (r)
∂φ

R1 = − 1

2Tκ1(r/2)

(
Cκ2(φ)Sκ1 (r)∂r − Sκ2(φ)∂φ

)
R2 = − 1

2Tκ1(r/2)

(
κ2Sκ2(φ)Sκ1(r)∂r + Cκ2(φ)∂φ

)

Likewise, the transformation

(x, b) → (x ′(x), b) x ′ = �−κ1

(
�κ1(x) + ζ

)
(5.9)

with the canonical parameter ζ is also cycle-preserving, and its fundamental vector field is the
generator of �-translations along the geodesic l1 of S2

[κ1],κ2
,

L1 = −∂x∧ = −Cκ1(x)∂x. (5.10)

The search for a cycle-preserving transformation within (r, φ) → (r ′(r), φ) remains.
Using the cycle equation in the second form given in table 4, introducing the power ℘ of the
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origin relative to cycle (4.6) and taking into account that φ is assumed not to change, it suffices
to enforce

1

℘ ′ Tκ1(r
′/2) +

1

Tκ1(r
′/2)

∝ 1

℘
Tκ1(r/2) +

1

Tκ1(r/2)
. (5.11)

Hence, the one-parametric family of transformations with canonical parameter λ,

Tκ1(r
′/2) = eλTκ1(r/2) (5.12)

is cycle-preserving as it verifies (5.11) with ℘ ′ = e2λ℘; it can be interpreted as ‘homoteties’
around the origin with scale factor eλ. The fundamental vector field is obtained with the aid
of (2.9)

D = −Sκ1(r)∂r . (5.13)

We note the natural appearance of a one-parameter family of dilations in spaces such as the
sphere, hyperbolic plane and both de Sitter spacetimes, with non-zero curvature, in spite of a
vague but widespread belief against this possibility.

We must stress that L1, L2 generate cycle-preserving transformations for curved spaces.
When κ1 = 0, the approach discussed in this paragraph leads only to the standard dilation
r ′ = eλr as a new transformation beyond the motions; generators Li are still meaningful in
the flat case κ1 = 0 but they coincide with Pi and do not provide any new transformation.
Nevertheless, the flat conformal algebras will be obtained below as some suitable limit.

5.3. Involutive discrete cycle-preserving transformations

Equations (5.6) or (5.11) allow other discrete cycle-preserving transformations not belonging to
one-parametric families. These solutions correspond to inversions in cycles and are involutive.
There are three families, each matching perfectly with the three earlier types D,L1 and L2.
We start with the inversions in circles, associated with D. The discrete transformation

Tκ1(r
′/2) · Tκ1(r/2) = ℘0 (5.14)

is also a solution of (5.11) with ℘ ′ = ℘ = ℘0. The circle with centre at the origin and
radius ρ0 such that T 2

κ1
(ρ0/2) = −℘0 is invariant under this transformation, which therefore

corresponds to the inversion in that circle. For any value of κ1, the product of two inversions
in two concentric circles in the family (5.14) with constants ℘0, ℘

′
0 is a dilation (5.12) with the

same centre and scale factor eλ = ℘ ′
0/℘0. All this is well known for the κ1 = 0 case, where

(5.14) reduces to the standard flat inversion in circles r ′ = 4℘0/r .
In the generic κ1 
= 0 case, both �-translations, (5.8) and (5.9), can also be expressed

as a product of two involutive discrete transformations, namely inversions in equidistants.
Specifically, the rhs of the cycle equations in parallel II coordinates can be recast in the third
form given in table 4. If the condition of carrying cycles into cycles is enforced, this gives an
equation fully analogous to (5.11), where the rhs is replaced by

1

κ1℘2

(
1 − √

κ1Tκ1(x/2)

1 +
√

κ1Tκ1(x/2)

)
+

(
1 − √

κ1Tκ1(x/2)

1 +
√

κ1Tκ1(x/2)

)−1

℘2 = 1

κ1

α
√

κ1 − α1

α
√

κ1 + α1
(5.15)

and the lhs is formally similar with α′, α′
1, x

′ and ℘ ′
2. In this form, the equation allows us to

read directly a discrete and involutive cycle-preserving transformation similar to (5.14),(
1 − √

κ1Tκ1(x
′/2)

1 +
√

κ1Tκ1(x
′/2)

)
·
(

1 − √
κ1Tκ1(x/2)

1 +
√

κ1Tκ1(x/2)

)
= κ1℘2. (5.16)

This transformation keeps invariant one branch of a certain equidistant (with parameters
α0 = β0 = 0, α1 
= 0, α2 = β2 = 0 and α = α1Sκ1(d)) to the line l2, and the ‘time-like’
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equidistance d coincides with the x coordinate which is constant along the equidistant. The
quantity ℘2 may be called the power of the baseline relative to that cycle. Again, the product
of two such inversions in two coaxial equidistants (with the same baseline) is a �-translation
along the line l1. Everything is similar for the third family corresponding to the cycle equations
in parallel I coordinates, as described by analogous expressions with the replacements α → α,
α1 → α2, y → x, κ1 → κ1κ2 and ℘2 → ℘1.

Thus, these discrete inversions are even more basic than the one-parameter transformations
generated by D,L1 and L2, and they display a behaviour which in the generic curved
case is completely symmetric between the three basic one-parameter motion subgroups; this
symmetry disappears in the flat limit κ1 = 0, where inversions reduce to ordinary reflections
in geodesics (recall Li reduce in this limit to Pi).

5.4. Conformal algebras

Summing up, for κ1 
= 0 we have found six one-parametric subgroups of cycle-preserving
transformations in S2

[κ1],κ2
with generators {Pi, J12, Li,D} (i = 1, 2). By writing them in the

same coordinate system as shown in table 6, it can be checked that they close a Lie algebra
denoted confκ1,κ2 with Lie brackets and Casimir invariants given by

[J12, P1] = P2 [J12, P2] = −κ2P1 [P1, P2] = κ1J12

[J12, L1] = L2 [J12, L2] = −κ2L1 [L1, L2] = −κ1J12

[D,Pi] = Li [D,Li] = Pi [D, J12] = 0

[P1, L1] = κ1D [P2, L2] = κ1κ2D

[P1, L2] = 0 [P2, L1] = 0

(5.17)

C ′
1 = −κ1J

2
12 + κ1κ2D

2 + κ2
(
L2

1 − P 2
1

)
+
(
L2

2 − P 2
2

)
C ′

2 = κ1J12D + (L1P2 − P1L2).
(5.18)

An interesting trait, which, as far as we know has not been pointed out previously, is a
conformal duality between the generators of translations and �-translations,

Pi ↔ Li J12 ↔ J12 D ↔ D (5.19)

which interchanges the set of conformal algebras confκ1,κ2 ↔ conf−κ1,κ2 and thus, relates the
conformal algebras of spaces with opposite curvatures and the same signature type.

Now we discuss the flat limit κ1 → 0. In this case, Li coincide with the translation
generators Pi , but as long as κ1 
= 0, we may take two other generators

Gi = 1

κ1
(Li − Pi) i = 1, 2 (5.20)

which are always defined and continue to be independent of the four remaining generators
Pi, J12 and D, when κ1 = 0. In the Euclidean case, it turns out that Gi generate the so-called
specific conformal transformations, so that we will keep this name in the general curved case.
The differential realization of generators {Pi, J12,Gi,D} for any value of κ1 is given in table 6.
On this basis, the commutation rules and Casimirs of confκ1,κ2 read

[J12, P1] = P2 [J12, P2] = −κ2P1 [P1, P2] = κ1J12

[J12,G1] = G2 [J12,G2] = −κ2G1 [G1,G2] = 0

[D,Pi] = Pi + κ1Gi [D,Gi] = −Gi [D, J12] = 0

[P1,G1] = D [P2,G2] = κ2D

[P1,G2] = −J12 [P2,G1] = J12

(5.21)
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C1 = −J 2
12 + κ2D

2 + κ2(P1G1 + G1P1) + (P2G2 + G2P2) + κ1
(
κ2G

2
1 + G2

2

)
(5.22)

C2 = J12D + (G1P2 − P1G2)

provided that Ci = C ′
i/κ1. Note that {P1, P2, J12} spans a CK algebra soκ1,κ2(3), but the set

{P1, P2, J12; D} only closes a Lie algebra (isometries plus dilations) if κ1 = 0.
Another interesting basis for confκ1,κ2 is {Ri, J12,Gi,D}, where

Ri = Pi + 1
2κ1Gi = 1

2 (Pi + Li) i = 1, 2. (5.23)

The commutation relations and Casimir operators are now given by

[J12, R1] = R2 [J12, R2] = −κ2R1 [R1, R2] = 0

[J12,G1] = G2 [J12,G2] = −κ2G1 [G1,G2] = 0

[D,Ri] = Ri [D,Gi] = −Gi [D, J12] = 0

[R1,G1] = D [R2,G2] = κ2D

[R1,G2] = −J12 [R2,G1] = J12

(5.24)

C1 = −J 2
12 + κ2D

2 + κ2(R1G1 + G1R1) + R2G2 + G2R2

C2 = J12D + G1R2 − R1G2.
(5.25)

Therefore, the curvature κ1 disappears from the commutators; this is due to the fact that spaces
with the same metric signature but opposite curvatures have essentially the same conformal
algebra and was already suggested by the conformal duality Pi ↔ Li as this changed sign
to κ1. This means that all spaces in the family S2

[κ1],κ2
with the same κ2 have isomorphic

conformal algebras. These are

• so(3, 1) ((2 + 1))D de Sitter algebra) as the conformal algebra of the three 2D Riemannian
spaces with κ2 > 0,

• iso(2, 1) ((2 + 1)D Poincaré) for the (1 + 1)D non-relativistic spacetimes with κ2 = 0 and
• so(2, 2) ((2 + 1)D anti-de Sitter) for the (1 + 1)D relativistic spacetimes with κ2 < 0.

In relation to the usual approach to conformal groups, by solving the conformal Killing
equations [9] we state the following:

Proposition 3. All the vector fields X displayed in table 6 satisfy the conformal Killing
equations for the metrics g1, g2 of the space S2

[κ1],κ2
, that is, LXgi = µXgi , where LXgi is the

Lie derivative of gi . In Weierstrass coordinates, the conformal factors µX are given by

µP1 = µP2 = µJ12 = 0 µD = −2x0 µG1 = 2x1 µG2 = 2κ2x
2. (5.26)

6. Conformal symmetries of Laplace/wave-type equations

As a byproduct of the conformal vector fields deduced in the previous section, we now proceed
to obtain differential equations with conformal algebra symmetry.

Let us consider a 2D space with coordinates (u1, u2), a differential operator E =
E(u1, u2, ∂1, ∂2) acting on functions �(u1, u2) defined on the space (∂i ≡ ∂/∂ui), and consider
the differential equation

E�(u1, u2) = 0. (6.1)

An operator O is a symmetry of (6.1) if O transforms solutions into solutions,

EO = QE or [E,O] = Q′E (6.2)
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Table 7. The Laplace–Beltrami operator C giving rise to differential Laplace and wave-type
equations C� = 0 in geodesic parallel I �(a, y) ≡ �(t, y) and polar �(r, φ) ≡ �(r, χ)

coordinates for the nine CK spaces (when κ2 � 0 the angle is denoted as χ and is a rapidity
in the kinematical interpretation).

so(3, 1) : S2 = S2
[+],+ so(3, 1) : E2 = S2

[0],+ so(3, 1) : H2 = S2
[−],+

1

cos2 y
∂2
a + ∂2

y − tan y∂y ∂2
a + ∂2

y

1

cosh2 y
∂2
a + ∂2

y + tanh y∂y

1

sin2 r
∂2
φ + ∂2

r +
1

tan r
∂r

1

r2
∂2
φ + ∂2

r +
1

r
∂r

1

sinh2 r
∂2
φ + ∂2

r +
1

tanh r
∂r

iso(2, 1) : NH1+1
+ = S2

[+1/τ 2],0
iso(2, 1) : G1+1 = S2

[0],0 iso(2, 1) : NH1+1
− = S2

[−1/τ 2],0

∂2
y ∂2

y ∂2
y

1

τ 2 sin2(r/τ )
∂2
χ

1

r2
∂2
χ

1

τ 2 sinh2(r/τ )
∂2
χ

so(2, 2) : AdS1+1 = S2
[+1/τ 2],−1/c2 so(2, 2) : M1+1 = S2

[0],−1/c2 so(2, 2) : dS1+1 = S2
[−1/τ 2],−1/c2

−1

c2 cosh2(y/cτ )
∂2
t + ∂2

y − 1

c2
∂2
t + ∂2

y

−1

c2 cos2(y/cτ )
∂2
t + ∂2

y − tan(y/cτ )

cτ
∂y

+
tanh(y/cτ )

cτ
∂y

1

r2
∂2
χ − 1

c2
∂2
r − 1

c2r
∂r

1

τ 2 sinh2(r/τ )
∂2
χ − 1

c2
∂2
r − 1

c2τ tanh(r/τ )
∂r

1

τ 2 sin2(r/τ )
∂2
χ − 1

c2
∂2
r

− 1

c2τ tan(r/τ )∂r

where Q is another operator and Q′ = Q − O. We now focus our attention on the differential
equation obtained by taking as E the Casimir C of the CK algebra soκ1,κ2(3) (2.2) in the space
S2

[κ1],κ2
: C� = 0. In the three geodesic coordinate systems, such an equation turns out to be(

κ2

C2
κ1κ2

(y)
∂2
a + ∂2

y − κ1κ2Tκ1κ2(y)∂y

)
�(a, y) = 0

(
κ2∂

2
x − κ1κ2Tκ1(x)∂x +

1

C2
κ1

(x)
∂2
b

)
�(x, b) = 0 (6.3)

(
κ2∂

2
r +

κ2

Tκ1(r)
∂r +

1

S2
κ1

(r)
∂2
φ

)
�(r, φ) = 0.

The conformal algebra confκ1,κ2 is a symmetry algebra of these equations, and by using
table 6, the generators {Pi, J12,Gi,D} are shown to fulfil relations (6.2) with the same factors
appearing in (5.26),

[C,X] = 0 X ∈ {P1, P2, J12}
[C,D] = −2Cκ1(a)Cκ1κ2(y)C = −2Cκ1(x)Cκ1κ2(b)C = −2Cκ1(r)C ≡ −2x0C
[C,G1] = 2Sκ1(a)Cκ1κ2(y)C = 2Sκ1(x)C = 2Sκ1(r)Cκ2(φ)C ≡ 2x1C
[C,G2] = 2κ2Sκ1κ2(y)C = 2κ2Cκ1(x)Sκ1κ2(b)C = 2κ2Sκ1(r)Sκ2(φ)C ≡ 2κ2x

2C.

(6.4)

The operator C leading to equations (6.3) is written for each specific CK space in table 7
in geodesic parallel I and polar coordinates. Hence, as conformally invariant equations we
find
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• The usual 2D Laplace equation in E2 and the corresponding non-zero curvature Laplace–
Beltrami versions in the sphere and hyperbolic plane; all of them share the same symmetry
algebra so(3, 1).

• An equation which does not involve time in the three non-relativistic spacetimes (indeed
reducing to a 1D ‘Laplace’ equation). This agrees with the known absence of a true
Galilean invariant wave equation and is the main reason precluding further development
of non-relativistic electromagnetic theories [17], where only two separate electric and
magnetic essentially static limits are allowed [18, 19].

• The proper (1 + 1)D wave equation is associated with M1+1 [20]; its curvature versions
correspond to anti-de Sitter and de Sitter electromagnetism in both AdS1+1 and dS1+1.
These three wave-type equations have so(2, 2) as their conformal symmetry algebra.

7. Concluding remarks

The present paper gives an approach to the conformal algebras, groups and spaces
comprehensive enough to allow a global understanding of those aspects of conformal
invariance related to either the space curvature or the metric signature in the initial space. In
addition to introducing a new direct derivation for conformal generators, we manage to provide
everything in a very explicit form, including the Lie algebra commutators and the differential
realizations of the generators of cycle-preserving transformations as first-order differential
operators in the CK space S2

[κ1],κ2
. Thus, we embody, within a single family, all nine spherical,

Euclidean, hyperbolic, Galilean, both Newton–Hooke, anti-de Sitter, Minkowskian and de
Sitter cases, which are described in a unified form with two parameters linked to the constant
curvature and the signature. These results can be taken as a starting point for the study of
conformal completion or compactification of spacetimes that will be presented elsewhere.

In both Euclidean and Minkowskian spaces, the transition from the motion to the
conformal group can be looked at in two stages: the motion group can be extended first by a one-
parameter dilation subgroup, obtaining a similitude group, and then by the specific conformal
transformations, closing the whole conformal group. It is a widespread belief that dilation-like
transformations do not exist in spaces with non-zero curvature (sphere, de Sitter, . . .), but the
explicit results obtained here show that this is not so. What is actually different for non-zero
curvature is that the intermediate stage provided by similitudes does not exist as a group or
Lie algebra, and once a single dilation is added to the motion group, the full conformal group
is obtained. For κ1 = 0 there is a complete symmetry between the translation generators Pi

and specific conformal generators Gi , and these are usually introduced as a conjugate to
translations by an inversion in the origin. This symmetry does not extend to the non-zero
curvature case, and while the Pi do not commute among themselves when κ1 
= 0, the Gi

always commute for any κ1. There is however a conformal duality between translations
and �-translations, with respective generators Pi and Li , but this duality is invisible in the
conformal algebra of flat spaces, where �-translations coincide with translations, leaving the
specific conformal transformations as a kind of vestigial residue of the difference between Pi

and Li and the symmetry between them as a residue of the deeper duality (5.19).
Finally, we stress that some problems in the conventional Minkowskian quantum field

theories may be seen in a new light if dealt with in the non-zero curvature case (anti-de Sitter or
de Sitter) taking afterwards a flat limit; in this sense, the study of dependence on the curvature
is a natural enquiry. The degeneration of a Lorentzian-type metric produces Newtonian
theories, and ‘non-relativistic electromagnetic theories’, Maxwell–Le Bellac–Lévy–Leblond
equations [18, 19], as non-relativistic limits of Maxwell equations also fit inside this
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parametrized scheme. In this respect, the results here obtained may constitute a starting
point for the development of anti-de Sitter and de Sitter electromagnetism.
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Appendix. The lambda function

Let us recall the definitions for the Gudermannian function gd(x) and the function λ(x) [21]
which often appear in hyperbolic geometry,

gd(x) = π

2
− 2 arctan(e−x) = 2 arctan(ex) − π

2
(A.1)

λ(x) = −i
π

2
− 2 argtanh(−i e−ix) = 2i arctan(e−ix) − i

π

2
. (A.2)

They are related by λ(x) = i gd(−ix) and they are the inverse of each other, gd(λ(x)) =
x, λ(gd(x)) = x. Alternatively, these functions may be defined by the functional relations

tanh

(
λ(x)

2

)
= tan

(x

2

)
tanh

(x

2

)
= tan

(
gd(x)

2

)
(A.3)

showing that if x ∈ (−∞,∞), then gd(x) ∈ (−π/2, π/2). If gd(x) is considered as a
point in the circle S1 ≡ (−π, π], the image of R by the map gd(x) fills only half the circle.
Alternatively, the map λ(x) is only defined in half the circle x ∈ (−π/2, π/2), and the image
is the whole line R.

Within the parametrized CK approach we define the Lambda function �κ(x) as

�κ(x) ≡ x∧ :=
∫ x

0

1

Cκ(t)
dt . (A.4)

Hence we find

�κ(x) = 1√−κ

π

2
− 2 arc T−κ

(
1√−κ

e−√−κx

)
=




1√
κ
λ(

√
κx) κ > 0

x κ = 0
1√−κ

gd(
√−κx) κ < 0

. (A.5)

Therefore, both functions (A.2) and (A.1) are the two particular elliptic or hyperbolic instances
of a single CK labelled ‘Lambda function’. The analogue of the functional definition (A.3)
reads

T−κ

(
�κ(x)

2

)
= Tκ

(x

2

)
T−κ

(x

2

)
= Tκ

(
�−κ (x)

2

)
(A.6)

where

�−κ(�κ(x)) = x. (A.7)

This property extends the known fact that λ(x) and gd(x) are inverse to each other. From
this viewpoint, if x is a quantity with label κ , then �κ(x) is a quantity with label −κ , and
the Lambda function provides a canonical identification between quantities with elliptic and
hyperbolic labels. The precise relations required in the main text are

C−κ (�κ(x)) = 1

Cκ(x)
S−κ (�κ(x)) = Tκ(x) T−κ (�κ(x)) = Sκ(x)

(A.8)
C2

−κ (�κ(x)) − κS2
−κ (�κ(x)) = 1

d�κ(x)

dx
= 1

Cκ(x)
= C−κ (�κ(x)).
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